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Abstract. An ensemble of hard-core particles with infinite-range cosine interaction is solved 
exactly in one dimension. The system exhibits a disordered (high-temperature) and a 
periodically ordered (low-temperature) state, a classical second-order (high-density) and 
a first-order (low-density) phase transition, and four regions in the activity-temperature 
plane. 

1. Introduction 

The classical infinite-range X Y  model, in which each spin interacts with each spin 
equally strongly via a cosine potential, exhibits a classical second-order phase transition 
[1,2]. Each spin can be identified with a point on the unit circle; the ensemble of 
these points can be identified with a gas in one dimension with periodic boundary 
condition; the volume can be enlarged to a circle of radius M E  N. Here we investigate 
the case in which each particle has, in addition, a hard core. We solve this model 
exactly in the grand canonical ensemble and find both a classical second-order phase 
transition at high density, and a first-order phase transition at low density. The 
disordered (high-temperature) state is a hard-core fluid, while the ordered state is a 
one-dimensional crystal. 

2. The model 

Consider N 
a long-range 
size M. The 

particles of mass m, with hard-core diameter 1, interacting pairwise via 
( Vo/ M) cosine potential in a uniform external potential p and a box of 
N-particle Hamiltonian has the form 

where 

and qi E [0, M I ,  p i  is momentum. The corresponding grand canonical partition function 
at the inverse temperature p is 

m 
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where A = eP”-/ h is the activity. We assume qi < qi+l in the integrations and 
the 1/ N !  consequently does not appear. 

3. The transformation 

We begin with the Hubbard-Stratonovich, alias Kac-Siegert, transformation [2] of (2): 
02 m 

E = A N  j dq, . . . d q N  exp( -’! Vhc(lqi -411)) & d2  dŷ  
N =O 2 i , j  

( 3 a )  
N N 

2 2  i = l  i = l  

Consider the substitution 22 = PM(x*/ Vo), $’= pM(y2/ Vo), thus 

Let us now identify &(x, y, M, P, A )  as the grand partition function of a hard-core 
(HC) system, each particle of mass m and diameter 1 in the external non-uniform 
potential 

U(X, y,  q )  = y cos 27rq + x sin 27rq. (3c)  
This system has been solved [3] in the thermodynamic limit M + CO. In the following 
we neglect all finite-size corrections; the limit M +CO is obvious. 

4. Local field density relation 

The grand partition function E h c  of HC has the form [3] 

where p(z)  is the non-uniform density. Because of the periodicity of the potential U, 
we have 

p ( z ) = p ( z + l ) .  ( s a )  
Thus the integration in (4) can be performed, and yields 

:= exp( L ) .  1-po 
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The relation between the density and the external field for HC is given by 

Using ( 5 a )  we have 

Po p u ( q )  +In p ( q )  -In A = In( 1 - po) -- 
1-po 

p (  q )  = Apo exp( -In Eo - In In Eo - pu(  4)). 

or 

( 6 b )  
Therefore, the p ( q )  - u ( q )  relation is local in this special case. Integrating the above 
equation yields 

A f =  Eo In Eo ( 7 a )  
where 

f =  lo1 e-O”(q) dq. 

Inserting ( 3 c )  shows f =  f ( x , y ) ,  however comparison with ( 3 a )  shows that f =  f(e= r )  only, (i.e. the fields x, y are distributed isotropically for any M ) ,  in 

f ( R )  = M R )  
and ( 3 a )  becomes 

fact integration yields 

f ( r )  = I o (P r )  

where Io is the modified Bessel 

Inserting ( 5 b )  yields 

Let us summarise that E 
( 7 a )  contains the parameters 

( 7 b )  

(7c) 

function. It is convenient to substitute R = Pr, thus 

. 

determined implicitly by ( 7 e ) ,  ( 7 a )  and ( 7 c ) ,  where 
and p. 

The integration will be performed by the saddle point method. Therefore it follows 
that the disordered state exhibits R = 0 exactly, and thus this system behaves identically 
to HC in this case (R = 0). In the next section the highly ordered states will be 
investigated, and thereby the discussion of the phase transition will be prepared. 

5. Highly ordered states 

In the limit of large M, the integral in ( 7 c )  can be evaluated by the saddle point 
method. In this section, we consider the possibility of R >> 1. In that case ( 7 a )  reduces 
to 

In A f (  R )  = In Eo( R )  @a)  
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at leading order in In Eo, which is growing monotonically with R. Therefore 

or 

d R-CS 
-lnEo(R)- 1. 
dR 

R-m Thus R = V&, In eo- In A + VoP, 

- M - c o  

or 

VOP Pa= -In 3 =  -M-- M In A. 
2 

Without .JSS of generality, we can choose one direction for the vector (x, y ) ;  we c..oose 

x = o  y = R. (9a) 
Thus the potential ( 3 c )  is 

u(r, q )  = r cos(2rq).  
With ( 6 b )  we find the local density 

p (  q )  = Apo exp[ -In Eo - In In Eo - PV0 cos(2rq)l. (9c) 
Thus the ordered state is periodic, the location of the maxima is determined by the 
symmetry breaking (9a). The ratio of densities between the minimum and the maximum 
decays exponentially with 2 VoP. The ordered state is a 'one-dimensional crystal', see 
[4], stablised by the infinite range of the periodic interaction. 

The Ornstein-Zernike correlation function of HC is [3] 

For the special case s = q + 1, 1 EN, we find 

which depends on the mean density po and the distance 1 only. Especially the depen- 
dence on R enters into po only; therefore the form of c2 (equation (106)) is valid in 
the whole phase diagram of figure 1; the value of po is determined by Eo via (5d). 

For the case of the highly ordered state 

R-CC Po R - m :  1 1 << In Eo- In A + V0P =- 
1-po 1-po 

or 

Thus the highly ordered state exhibits almost the maximal density, a feature that one 
expects in crystals. 
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Figure 1. Phase diagram in the A-T plane. I corre- 
sponds to disordered states and I1 the periodically 
ordered states. I11 and IV are metastable states. The 
boundary between them is the coexistence curve. For 
A > Ac = 0.626 or T >  T, = 0.146 V,/ k ,  the phase 
transition is of second order and classical. 

t 
-0.3 t,,,,i, 
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Figure 2. A triple-well shape of the grand potential 
is shown for T = 0.08, A = 0.1. The minimum occurs 
at R = 0 and R = 9.25. 

6. Phase transition 

We first take the logarithm of ( 7 a )  

In( A Io( R ) )  = In So + In In Eo. (1 la )  
Now we expand the left-hand side of (1 1 a )  around R = 0 up to R6: 

In[ Io( R ) ]  = aR2 -&R4+&R6. 

The same expansion for the right-hand side of ( l l a )  is 

In So = a,+ a ,  R 2  + a,R2 + a2R4+ a3R6 

ln(1n E,,) =In ao+ R 2  -+ a1 R4 [:: --- : (k) ' ]+R6((n' -%+%).  
a0 a0 a0 3% 

From comparison of the coefficients it follows that 
In A = a,,+ln a, a , = a ( l + l / a o ) - ~  

a,=- 

These coefficients can be determined recursively. It is easy to see that ao>O, a,>O. 
The sign of a2 determines the order of the phase transition; namely, it is first order if 
a, > 0 and second order if a, < 0. The critical activity A, is determined by setting a, = 0. 
Therefore A, and the corresponding T, are given by 

( l l d )  A , =  (a- 1) e x p ( a -  1) ~ 0 . 6 2 6  k B T c -  - V 0 2  (i-2-3/2). 

The saddle point integration implies the grand potential 

+ a 2 R 4 + a , R 6 + O ( R 8 )  

The maximum of ,BR is taken at R = R. I? can be interpreted as an order parameter. 
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6.1. Second-order phase transition 

For A E [A,, 13 there occurs a classical second-order phase transition (figure 1)  at 
Vop(A)  = (2a,(A))-’, i.e. 

k,T = 4 Vopo. (12) 

6.2. Spinodal line 

This line separates regions I1 and 111 in figure 1.  For A E [0, A,], the disordered state 
( R  = 0) becomes unstable with respect to infinitesimal density fluctuations at the inverse 
temperature 

6.3. Limit A + 0 

There are two possibilities, namely 

E = O  
A,(R)<< 1, implying Eo+ 1, therefore 

( 1 4 a )  
or AIo(R) >> 1, implying =In E,. This case has been investigated in section 5, thus 

E = pv,. (14b) 
The boundary marks the first-order phase transition at the inverse coexistence tem- 
perature 

- 
V,pCoe, = R = -In A 

or 

(14c)  
A -0  

VoPcoex - W. 

If in the interaction, the cosine would be multiplied by a factor which decreases with 
distance, there may be a tendency to form clusters of high and low density in the 
two-phase region. This tendency does not exist here, because a particle can be shifted 
by a multiple of the wavelength without change of energy, provided the respective 
space is available. 

6.4. Coexistence curve 

Unlike that in region 11, where pa is a symmetrical double well, the shape of pi2 in 
regions I11 and IV is a triple well (figure 2). In region IV, the disordered state 
corresponds to the global minimum of pa, while it is only metastable in region 111. 
The boundary is determined by 

WR*)  = W O )  (15)  
where R, and 0 are the locations of three local minima of p a .  

6.5. Second part of the spinodal line 

There is a third phase boundary for A < A c ,  which plays a similar role as the usual 
spinodal line, (6b), which separates a one-phase region (I  or 11) from a two-phase 
region ( IV or  111) in the phase diagram. On the line, the ordered state becomes unstable 
with respect to infinitesimal perturbations. 
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7. Discussion 

Although our calculation was carried out in a very special and rather artificial case, 
i.e. the wavelength of the cosine interaction being equal to the HC size, the amazing 
phase diagram (figure 1) seems qualitatively true in other situations. Fesjian and Percus 
investigated the same system when the wavelength is equal to the size of the system 
[ 5 ] .  Using local density approximations which is supposed to be good there, they 
discovered the same structure in the phase diagram. The previous calculation has a 
trivial extension when the HC size is a multiple K of the wavelength. K is equal to 1 
in this paper. This change reduces the activity A to A / K and all our conclusions are 
still true. Therefore, if we reasonably assume the phase diagram changes continuously 
when wavelength changes, figure 1 should be true for any wavelength. 

Zhang studied H N  in (1) in a canonical ensemble [6]. The result is somehow 
different. He discovered a second-order phase transition in the short-wavelength case 
( K  = integer), and a first-order transition in the long-wavelength limit. The former can 
be understood easily by mapping it into a classical infinite-range X Y  model, where a 
second-order phase transition is well known. 

Finally, we comment on the possible applications of this calculation. In [4] the 
qualitative applications of this model to 3~ crystallisation are discussed. Hdye used a 
3~ cosine interaction as a perturbation to calculate the melting temperature of argon 
[7]. With a few further approximations, he obtained a result very close to the experi- 
mental data. 
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